An Inverse Problem for Finite Sidon Sets

نویسندگان

چکیده

Here is a direct problem for Sidon sets: Given linear form $$\varphi = c_1 x_1 + \cdots c_h x_h $$ , construct and describe sets A that are . This paper considers an inverse set A, determine the forms such

منابع مشابه

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Combinatorial problems in finite fields and Sidon sets

We use Sidon sets to present an elementary method to study some combinatorial problems in finite fields, such as sum product estimates, solvability of some equations and the distribution of their solutions. We obtain classic and more recent results avoiding the use of exponential sums, the usual tool to deal with these problems.

متن کامل

Generalized Sidon sets

We give asymptotic sharp estimates for the cardinality of a set of residue classes with the property that the representation function is bounded by a prescribed number. We then use this to obtain an analogous result for sets of integers, answering an old question of Simon Sidon. © 2010 Elsevier Inc. All rights reserved. MSC: 11B

متن کامل

Bounds for generalized Sidon sets

Let Γ be an abelian group and g ≥ h ≥ 2 be integers. A set A ⊂ Γ is a Ch[g]-set if given any set X ⊂ Γ with |X | = h, and any set {k1, . . . , kg } ⊂ Γ , at least one of the translates X + ki is not contained in A. For any g ≥ h ≥ 2, we prove that if A ⊂ {1, 2, . . . , n} is a Ch[g]-set in Z, then |A| ≤ (g − 1)1/hn1−1/h + O(n1/2−1/2h). We show that for any integer n ≥ 1, there is a C3[3]-set A ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Springer proceedings in mathematics & statistics

سال: 2022

ISSN: ['2194-1009', '2194-1017']

DOI: https://doi.org/10.1007/978-3-031-10796-2_14